

Development of Research and Training centre for Tannery Waste treatment using coir pith and Effective microorganisms to convert it into organic manure

Project Final Report

Submitted to

Central Coir Research Institute Kalavoor. P.O, Alappuzha 688 522

Kerala, India.

Submitted by

P. MALLIGA

Professor Dept. of Marine Biotechnology Bharathidasan University Tiruchirappalli-24

Development of Research and Training centre for Tannery Waste treatment using coir pith and Effective microorganisms to convert it in to organic manure

Aim

Tannery is a place where animal hides are tanned and the workshop of tanners. Tanning is the process of treating skins and hides of animals to produce leather which is more durable and less susceptible to decomposition. Tannery wastes are mainly characterized by high salinity, high organic loading and specific pollutants such as chromium. Nearly, 60,000 L of liquid and 1 ton of solid wastes are released from single tannery industry per day and thus polluting the environment around the industries. At present, coir pith (by-product of coir yarn industry) is being available in and around Tamil Nadu and Kerala. Hence, the aim of this project is to develop a Research and Training centre for the treatment of tannery waste using coir pith and Effective microorganisms to convert it into organic manure at Bharathidasan University.

Objectives

- Treatment of Tannery waste, coir pith and Nava Rasa Karaisal (NRK-Effective microorganisms) and conversion into organic manure
- > Application on field
- > To develop the Research centre at Bharathidasan University.

Effective Microorganisms

NRK (Nava Rasa Karaisal) is an organic product and it has microbial consortia. Microbes play an essential role in the biodegradation process such as Bacteria, Fungi, *Actinomycetes* and Yeast. The ingredient present in NRK enhances the microbial population which favours the degradation of tannery wastes along with coir pith and it is also possible to convert them into organic manure.

2

Treatment of Tannery waste

More number of tannery industries is present near Bharathidasan University and release large amount of solid and liquid wastes which pollutes the surrounding environment. During treatment of these wastes using microbial consortia, it is possible to reduce chemical contaminant including heavy metals present in tannery waste. The treated liquid form can be utilised for foliar and irrigation purposes and the solid can be used as basal fertilizer.

Work Plan

I Year

- Collection of tannery effluent and coir pith from industries.
- * Analysis of Physicochemical parameters (Initial).
- Treatment of Tannery (solid & liquid) wastes with coir pith and Nava Rasa Karaisal (NRK-Effective microorganisms)
- * Test the above effluent on seeds (seed germination)
- * Microbial analysis
- Analysis of Physicochemical parameters and nutrients (Final).
- * Application on plants
- * Analysis of growth and yield
- * Soil analysis
- Development of Research centre at Bharathidasan
 University

Methodology

S. No	CONTENTS				
1.	A) Collection of Sample				
2.	B) Preparation and Incubation of NRK				
3.	C) Treatments				
	i. Foliar ii. Basal				
	Experiment - I				
	Analysis of Physico-chemical Parameter				
4.	D) Comparison of physicochemical parameters in all treatments				
5.	E) Analysis of Scanning Electron Microscopy (SEM)				
6.	F) Analysis of Energy Dispersive Spectroscopy (EDS)				
	Experiment – II				
	Microbial Analysis				
7.	G) Microbial analysis in untreated and treated tannery effluent				
8.	H) Microbial analysis on soil (Initial)				
9.	I) Microbial analysis on soil (Final)				
	Experiment – III				
	Seed germination, Pot study and Field trail				
10.	J) Different dilutions for seed germination				
11.	K) Seed germination on <i>Vigna radiata</i> L.				
12.	L) Pot experiment of Tradescantia spathacea				
13.	M) Scaling up technology				
14.	N) Application on Field (Paddy & Banana)				
15.	0) Analysis of growth and yield				
	i. Paddy (<i>Oryza sativa L.</i>)				
	ii. Banana (<i>Musa acuminate</i>)				
16.	P) Development of Research & Training centre				

A) Collection of Sample

Tannery effluent sample **(Plate - 1)** was collected from a tannery industry Sempattu, near Bharathidasan University, Tiruchirappalli-24, Tamilnadu, India.

PLATE - 1 Tannery industrial wastes

The Coirpith **(Plate - 2)** was collected from coir industries near Srirangam, Tiruchirappalli-6, Tamil Nadu, India.

PLATE - 2 COIR PITH

B) Preparation and Incubation of NRK

Nava Rasa Karaisal (NRK) was prepared by mixing of five cow based products and other four ingredients. It was kept for 2 days of fermentation **(Plate - 3)**.

	Composition of NN	
	COMPOSITION	CONTENT
	Cow dung	10 kg
	Cow urine	1 L
	Milk	2 Itrs
	Besan flour	2 kg
	Curd	2 ltr
	Jaggery	2 kg
The second states of the	Ghee	100 gm
	Banana	12 pcs
	Yeast/ Soil	100gms

PLATE - 3 NAVA RASA KARAISAL

C) Treatments

i. Foliar

Different treatments were carried out such as 900ml (TN) +100ml (NRK), 900ml (TN)+20g (CP) and 900ml (TN)+20g (CP)+100ml (NRK) in Haffkin flasks and kept for 4 days. After treatment the filtrate (Supernatant) was collected and analysed Physicochemical, Microbiological, Pot & Field study were carried out **(Plate - 4)**.

PLATE - 4 Filtrate of treated tannery effluent as Foliar (4th day)

Around 10L filtrate was collected by filtration method (Plate - 5).

Plate - 5 Effect of Coir pith and NRK in tannery effluent

TN: Tannery, CP: Coir pith, NRK: Nava Rasa Karaisal

ii. Basal

Different treatments were carried out such as 5L (TN) + 500ml (NRK), 5(TN) + 5Kg (CP) and 5L (TN) +5Kg (CP) + 500ml (NRK) in plastic containers and kept for 30 days. After treatment the pellet was collected and analysed Physicochemical, Microbiological, Pot & Field study were carried out **(Plate -6)**.

PLATE-6 Treated tannery effluent as Basal (30th day)

Experiment - I

Analysis of Physico-chemical Parameters

D) Comparison of physicochemical parameters in all treatments

The Physicochemical parameters were analysed for untreated and treated tannery effluent in pellet (Basal) on 30th day and supernatant (Foliar) on 4th day. The parameters were compared in all treatments **(Table - 1).** All the parameters are slightly change in different treatments and the heavy metals are dispersed in combined treatments due to the presence of coir pith and NRK.

Table – 1Physicochemical parameter analysis of untreated and treated
tannery effluent (Basal & Foliar)

S.No	Parameters	TN	NRK	T	N+CP	TN+NRK	TN+C	P+NRK
		(mg/L)	(mg/L)	Basal mg/Kg	Foliar (mg/L)	Foliar (mg/L)	Basal mg/Kg	Foliar (mg/L)
1	Colour	Dark Brown	Hazen	Dark Brown	Dark Brown	Light Brown	Dark Brown	Light brown
2	Turbidity	<20	<20	-	<40	<20	-	<40
3	pН	8.87	5.64	6.64	6.45	8.87	6.73	6.38
4	EC (mS/cm)	9.88	1.574	0.675	8.438	7.895	0.696	9.45
5	TDS	44.6 (g/L)	9.16 (g/L)	7.65	49.6	37.6 (g/L)	5.65	22.9
6	Total solids	760	834	-	810	710	-	673
7	TSS (mg/lit)	88.9	148.26	-	140.5	74.5	-	120
8	Residual free chlorine	3.46 (g/L)	3.67 (g/L)	-	3.82 (g/L)	2.98 (g/L)	-	3.98 (g/L)
9	Alkalinity	10.5 (g/L)	2.87(g/L)	-	14.5	8.89 (g/L)	-	12.5
10	Total hardness	19.29 (g/L)	4.68(g/L)	-	22.44	16.7(g/L)	-	20.12 (g/L)
11	Salinity	14.4	-	0.687	14.26	-	0.695	13.4
12	Oil and grease	5.53	5.94	-	9.20	-	-	8.13
13	Sulphide	7.82	12.4	-	7.44	7.24	-	5.16
14	Chloride	7.86(g/L)	4.26(g/L)	-	9.12	7.12(g/L)	-	8.9 (g/L)
15	Nitrate	240	172	-	275	234	-	284

16	Nitrite	12.8	10.5	-	16.7	10.8	-	12.4
17	Nitrogen	18.84	12.56	12.5	15.12	15.42	13.7	13.22
18	Phosphorus	290	320	620	306	255	700	294
19	Potassium	2.25	1.86	2.34	3.50	2.20	2.56	3.70
20	Phenolic compound	2.82	3.82	-	2.95	2.50	-	3.50
21	Sodium	3.80	1.60	0.08	2.48	3.64	0.09	2.67
22	BOD	356	545	-	512	276	-	508
23	COD	1.98(g/L)	2.89(g/L)	-	2.78 (g/L)	1.54(g/L)	-	2.61 (g/L)
25	Magnesium	-	-	0.53	1.68	-	0.86	1.28
26	Calcium	-	-	0.34	3.3	-	0.83	-
27	Cadmium	10.0	6.45	-	4.60	8.65	-	4.12
28	Copper	25.0	16.70	1.10	6.42	23.5	1.0	7.88
29	Lead	10.3	8.5	-	3.78	9.7	-	3.76
30	Mercury	1.2	1.3	0.3	1.52	1.10	0.30	1.15
31	Zinc	12.4	16.85	1.86	18.74	11.0	2.25	14.90
32	Chromium	84.6	24.62	2.2	40.00	62.4	2.0	38.65
33	Iron	20.5	36.84	-	30.86	18.2	-	26.80
34	Nickel	6.7	6.25	-	4.40	6.0	-	4.14
35	Selenium	5.5	2.5	0.4	2.32	5.2	0.40	2.30
36	Manganese	5.6	3.0	-	3.45	5.2	-	3.48
37	Fluoride	12.0	10.64	2.45	12.43	8.8	2.4	11.15
38	Arsenic	2.8	3.0	-	1.80	-	-	-

E) Analysis of Scanning Electron Microscopy (SEM)

The surface changes was observed by Scanning Electron Microscopic view in untreated and treated tannery effluent with coir pith and NRK on 4th day (supernatant) **(Plate - 7)**.

Plate - 7 Scanning Electron Microscopic (SEM) view of untreated and treated tannery effluent using coir pith and NRK

on 4th day (Foliar)

The SEM analysis of combined treated tannery effluent on 30th day was observed (pellet) **(Plate - 8)**. In combined treatment tannery effluent particles and coir pith exhibited the smoothen surface due to the action of microorganisms present in NRK.

Plate - 8 Scanning Electron Microscopic (SEM) view of treated tannery

F) Analysis of Energy Dispersive Spectroscopy (EDS)

6

0.000

TN+NRK (F)

8

10

keV

TN+CP

The EDS analysis of untreated and treated tannery effluent using coir pith and NRK on 4th day (Supernatant) was observed (Plate - 9). It was showed the reduction of chemical compounds in combined treatment when compared with all other treatments due to addition of coir pith and NRK.

Element Weight% Atomic Element Weight% Atomic% Weight% 10.50 16.09 Element Atomic% СК СК 46.34 56.10 16.56 ОК 54.59 62.80 СК 24.73 οк 41.66 37.87 ОК 42.91 48.10 1.81 1.45 Na K 1.07 0.68 Na K 0.86 0.65 Na K 22.08 17.22 Mg K 0.27 0.16 Mg K 0.49 0.36 Mg K AI K 7.07 4.82 AI K 0.10 0.05 SК 10.32 5.77 10.06 Si K 15.34 Si K 7.74 4.01 СIК 7.20 SΚ 0.19 0.11 3.64 РК 0.18 0.08 КК 0.30 0.14 CI K 1.29 0.67 SΚ 0.22 0.10 0.77 Cu K 0.15 0.04 КК 0.36 CI K 1.30 0.53 100.00 Ca K 3.66 1.68 Totals КΚ 0.83 0.31 Ti K 0.32 0.12 Ca K 0.30 0.11 Fe K 3.61 1.19 100.00 Totals Totals 100.00 6 10 6 8 10 8 2 4 4 6 8 10 TNE TNS NRK 22 cts Cursor: 0.000 keV 22 cts Cursor: 0.000 an ocare rooz 2 cts Cursor: 0.000 keV Element Weight% Atomic Element Weight% Atom Element Weight% Atomic% СК 24.67 35.59 СК 45.09 59.75 СК 36.64 48.40 ОΚ οк 43.43 47.04 26.10 25.96 ОК 36.20 35.90 Na K 5.71 3.96 Na K 5.73 4.32 Na K 12.83 8.85 Mg K 0.25 0.16 Mg K 1.38 0.99 1.00 0.65 Mg K Si K 0.33 0.19 Si K 0.20 0.12 Al K 0.12 0.07 SΚ 4.86 2.41 РК 0.95 0.53 0.25 Si K 0.44 CI K 9.41 4.22 SΚ 9.19 4.97 РК 0.37 0.19 кк 7.68 3.13 CI K 1.56 0.76 SK 4.98 2.46 Ca K 0.57 0.22 10.11 КΚ 4.48 Totals 100.00 CI K 5.45 2.44 Ca K 2.77 1.20 КΚ 1.11 0.45 100.00 Totals 8

Plate - 9 EDS analysis of untreated and treated tannery effluent using coir pith and NRK on 4th day (Foliar)

TNS-Tannery Industry Soil, TNE-Tannery Effluent, CP-Coir Pith, NRK- Nava Rasa Karaisal, F- Foliar

ursor: 0.000

6

8

10

keV

6

TN+CP +NRK (F)

10

keV

The EDS combined treated tannery effluent on 30th day was observed (pellet) (Plate - 10). It was showed the reduction of chemical compounds in combined treatment when compared with all other treatments.

Plate - 10 EDS analysis of treated tannery effluent using coir pith and NRK on 30th day (Basal)

Experiment – II

Microbial Analysis

G) Microbial analysis in untreated and treated tannery effluent

Plate - 11 & 12 showed the microbial flora (Bacteria & Fungi) of untreated and treated tannery effluent. More number of colonies was observed in combined treatment due to utilize the nutrient in coir pith and NRK (pellet & supernatant).

Plate - 11 ISOLATION OF BACTERIA FROM UNTREATED AND TREATED TANNERY EFFLUENT

Plate – 12 ISOLATION OF FUNGI FROM UNTREATED AND TREATED TANNERY EFFLUENT

TN+CP+NRK (Basal)

H) Microbial analysis on soil (Initial)

Before applying the inorganic and organic fertilizer, the microbial flora (bacteria & fungi) was isolated in paddy field soil (**Plates - 13 & 14**).

Plate - 13 Isolation of soil bacteria from inorganic and organic fertilizers applied on *Oryza sativa* (Initial)

 Control

 10⁻¹
 10⁻²

 10⁻⁴
 10⁻⁵

 10⁻⁴
 10⁻⁵

 10⁻⁷
 10⁻⁸

 10⁻⁷
 10⁻⁸

 10⁻¹⁰

(Organic) (TN+CP+NRK)

Plate - 14 Isolation of soil fungi from inorganic and organic fertilizers applied on *Oryza sativa* (Initial)

Plates - 15 & 16 (banana field) shows the microbial flora (bacteria & fungi) of inorganic and organic fertilizers treated soil on initial day.

Plate – 15 Isolation of soil fungi from inorganic and organic fertilizers applied on *Musa acuminatae (Initial)*

Plate - 16 Isolation of soil fungi from inorganic and organic fertilizers applied on *Musa acuminatae (Initial)*

(Inorganíc)

(Organíc)(TN+CP+NRK)

 Table 2 & 3 shows colony forming unit (CFU) of bacteria and fungi isolated from paddy soil treated with inorganic and organic fertilizers.

Table - 2 Total bacterial count inPaddy soil (Oryza sativa L)

S.No	Dílutíons	CFU	
		Inorganíc	organíc
1	10-1	85 × 10 ⁻¹	80× 10 ⁻¹
2	10-2	25× 10 ⁻²	76× 10 ⁻²
3	10 ⁻³	10× 10 ⁻³	70× 10 ⁻³
4	10 ⁻⁴	3× 10 ⁻⁴	60× 10 ⁻⁴
5	10 ⁻⁵	3× 10 ⁻⁵	30× 10 ⁻⁵
6	10 ⁻⁶	3× 10 ⁻⁶	28× 10 ⁻⁶
7	10-7	3× 10 ⁻⁷	25× 10 ⁻⁷
8	10 ⁻⁸	2× 10 ⁻⁸	24× 10 ⁻⁸
9	10 ⁻⁹	2× 10 ⁻⁹	23× 10 ⁻⁹
10	10-10	1× 10 ⁻¹⁰	23× 10 ⁻¹⁰

Table - 3 Total fungal count in Paddysoil (Oryza sativa L)

S.No	Dílutíons	CFU		
		Inorganíc	organíc	
1	10-1	0× 10 ⁻¹	28× 10 ¹	
2	10-2	0× 10 ⁻²	20× 10 ²	
3	10 ⁻³	0× 10 ⁻³	6× 10 ³	
4	10-4	1× 10 ⁻⁴	4× 10 ⁴	
5	10 ⁻⁵	1× 10 ⁻⁵	3× 10 ⁵	
6	10 ⁻⁶	0× 10 ⁻⁶	3× 10 ⁶	
7	10 ⁻⁷	0× 10 ⁻⁷	3× 10 ⁷	
8	10 ⁻⁸	0× 10 ⁻⁸	3× 10 ⁸	
9	10 ⁻⁹	0× 10 ⁻⁹	25× 10 ⁹	
10	10 ⁻¹⁰	1× 10 ⁻¹⁰	3× 10 ¹⁰	

 Table 4 & 5 shows colony forming unit (CFU) of bacteria and fungi isolated from banana soil treated with inorganic and organic fertilizers.

	-			
<i>S</i> .	Dílutíons	CFU		
Ло		Inorganíc	organíc	
1	10 ⁻¹	50× 10 ¹	72× 10 ¹	
2	10-2	41× 10 ²	58× 10 ²	
3	10 ⁻³	36×10 ³	44×10 ³	
4	10 ⁻⁴	27× 10 ⁴	38× 10 ⁴	
5	10 ⁻⁵	17× 10 ⁵	29× 10⁵	
6	10 ⁻⁶	14× 10 ⁶	19× 10 ⁶	
7	10 ⁻⁷	11× 10 ⁷	14× 10 ⁷	
8	10 ⁻⁸	9× 10 ⁸	10× 10 ⁸	
9	10 ⁻⁹	6× 10 ⁹	9× 10 ⁹	
10	10 ⁻¹⁰	4× 10 ¹⁰	5× 10 ¹⁰	

Table - 4 Total bactería count ín Banana field

Table - 5 Total Fungí count ín Banana field

<i>S</i> .	Dílutíons	CFU	
No		Inorganíc	organíc
1	10-1	63× 10 ¹	49× 10 ¹
2	10 ⁻²	51× 10 ²	46× 10 ²
3	10 ⁻³	42×10 ³	45×10 ³
4	10 ⁻⁴	34× 10 ⁴	41× 10 ⁴
5	10 ⁻⁵	25× 10 ⁵	36× 10 ⁵
6	10 ⁻⁶	19× 10 ⁶	27× 10 ⁶
7	10 ⁻⁷	15× 10 ⁷	20× 10 ⁷
8	10 ⁻⁸	11× 10 ⁸	16× 10 ⁸
9	10 ⁻⁹	8× 10 ⁹	12× 10 ⁹
10	10 ⁻¹⁰	6× 10 ¹⁰	7× 10 ¹⁰

I) Microbial analysis on soil (Final)

Plates - 17 & 18 (paddy field) shows the microbial flora (bacteria & fungi) on soil treated with inorganic and organic fertilizers on final day. Bacterial and fungal colonies were increased in organic fertilizer (which was containing the nutrient) applied soil when compared with inorganic fertilizer applied soil.

Plate – 17 Isolation of soil bacteria from inorganic and organic fertilizers applied on *Oryza sativa* (Final)

Plate - 18 Isolation of soil fungi from inorganic and organic fertilizers applied on Oryza sativa (Final)

On final day (banana field) more number of microbial colonies was observed (bacteria & fungi) in organic fertilizer treated soil than inorganic fertilizer treated soil (**Plates - 19 & 20**).

Plate – 19 Isolation of soil bacteria from inorganic and organic fertilizers applied on *Musa acuminate* (Final)

Stock Stock 10-1 10-2 10-3 10-2 10-3 10-1 10-4 10-4 10-5 10-6 10-5 10-6 10-7 10⁻⁸ 10⁻⁹ 10-7 10⁻⁸ 10⁻⁹ 10-10 10-10

Plate – 20 Isolation of soil fungi from inorganic and organic fertilizers applied on *Musa acuminate* (Final)

(Inorganic)

(Organic) (TN+CP+NRK)

 Table 6 & 7 shows more number of colonies of bacteria and fungi isolated from paddy soil

 treated with organic fertilizers due to presence of NRK compared to inorganic fertilizers.

Table - 6 Total bacterial count inPaddy soil (Oryza sativa L)

S.No	Dílutíons	CFU		
		Inorganíc	organíc	
1	10 ⁻¹	× 10 ⁻¹	× 10 ⁻¹	
2	10 ⁻²	147× 10 ⁻²	168× 10 ⁻²	
3	10 ⁻³	89× 10 ⁻³	106× 10 ⁻³	
4	10 ⁻⁴	65× 10 ⁻⁴	84× 10 ⁻⁴	
5	10 ⁻⁵	54× 10 ⁻⁵	73× 10 ⁻⁵	
6	10 ⁻⁶	47× 10 ⁻⁶	61× 10 ⁻⁶	
7	10-7	43× 10 ⁻⁷	54× 10 ⁻⁷	
8	10 ⁻⁸	38× 10 ⁻⁸	43× 10 ⁻⁸	
9	10 ⁻⁹	31× 10 ⁻⁹	36× 10 ⁻⁹	
10	10 ⁻¹⁰	23× 10 ⁻¹⁰	28× 10 ⁻¹⁰	

Table - 7 Total fungal count in Paddysoil (Oryza sativa L)

S.No	Dílutíons	CFU	
		Inorganíc	organíc
1	10 ⁻¹	6× 10 ⁻¹	14× 10 ⁻¹
2	10 ⁻²	4× 10 ⁻²	24× 10 ⁻²
3	10 ⁻³	23× 10 ⁻³	9× 10 ⁻³
4	10 ⁻⁴	11× 10 ⁻⁴	15× 10 ⁻⁴
5	10 ⁻⁵	8× 10 ⁻⁵	19× 10 ⁻⁵
6	10 ⁻⁶	5× 10 ⁻⁶	7× 10 ⁻⁶
7	10-7	5× 10 ⁻⁷	15× 10 ⁻⁷
8	10 ⁻⁸	4× 10 ⁻⁸	19× 10 ⁻⁸
9	10 ⁻⁹	7× 10 ⁻⁹	12× 10 ⁻⁹
10	10 ⁻¹⁰	5× 10 ⁻¹⁰	6× 10 ⁻¹⁰

 Table 8 & 9 shows more number of colonies of bacteria and fungi isolated from banana soil

 treated with organic fertilizers compared to inorganic fertilizers.

Table - 8 Total bacteríal counts ínBanana soíl (Musa acumínate)

S.No	Dílutíons	CFU		
		Inorganíc	organíc	
1	10-1	9× 10 ⁻¹	84× 10 ⁻¹	
2	10-2	55× 10 ⁻²	76× 10 ⁻²	
3	10 ⁻³	22× 10 ⁻³	58× 10 ⁻³	
4	10 ⁻⁴	72× 10 ⁻⁴	42× 10 ⁻⁴	
5	10 ⁻⁵	36× 10 ⁻⁵	31× 10⁻⁵	
6	10 ⁻⁶	25× 10⁻ ⁶	28× 10⁻ ⁶	
7	10 ⁻⁷	10× 10 ⁻⁷	21× 10 ⁻⁷	
8	10 ⁻⁸	9× 10 ⁻⁸	17× 10 ⁻⁸	
9	10 ⁻⁹	8× 10 ⁻⁹	13× 10 ⁻⁹	
10	10 ⁻¹⁰	6× 10 ⁻¹⁰	10× 10 ⁻¹⁰	

Table - 9 Total fungal counts in Banana soil (*Musa acuminate*)

S.No	Dílutíons	CFU		
		Inorganíc	organíc	
1	10-1	78× 10 ⁻¹	73× 10 ⁻¹	
2	10-2	63× 10 ⁻²	65× 10 ⁻²	
3	10 ⁻³	51× 10 ⁻³	54× 10 ⁻³	
4	10 ⁻⁴	20× 10 ⁻⁴	41× 10 ⁻⁴	
5	10 ⁻⁵	38× 10 ⁻⁵	39× 10 ⁻⁵	
6	10 ⁻⁶	27× 10 ⁻⁶	31× 10 ⁻⁶	
7	10 ⁻⁷	21× 10 ⁻⁷	25× 10 ⁻⁷	
8	10 ⁻⁸	15× 10 ⁻⁸	16× 10 ⁻⁸	
9	10 ⁻⁹	12× 10 ⁻⁹	13× 10 ⁻⁹	
10	10-10	9× 10 ⁻¹⁰	11× 10 ⁻¹⁰	

Table-10 Isolation of Bacteria & Fungi in all treatment and control

S.No	Microorganisms	Soil from TN industry (10-410- ⁵ 10-6)	TN (10-410-510-6)	NRK (10-1 10-10)	CP (10410-510-6)	TN+NRK (10410-510-6)	TN+CP (10 ⁴ 10 ⁻⁵ 10 ⁻⁶)	TN+CP+NRK (10 ⁻¹ 10 ⁻¹⁰)	Soil from R Banana fiel	ice field and d (10 ⁻¹ 10 ⁻¹⁰)
1	Bacteria (Control)									
	Supernatant									

	(Pellet)								
	No. of colonies (Control)	-	100	-					
	Supernatant				46	-	85	-	37
	(Pellet)						27		11
2	Fungi (Control)			-					

Supernatant								
Pellet								
No .of colonies (Control)	-	12	-					
(supernatant)				14	-	13	-	10
(Pellet)						17		31

Table - 11 Microscopic view of Bacteria & Fungi in all treatments and control

S.No	Microorganisms	Soil from TN industry	TN	NRK	СР	TN+NRK	TN+CP	TN+CP+NRK	Soil from Rice field/ Banana field
1	Bacteria (Control)	-	-						
	Supernatant						-		
	(Pellet)								

2	Fungi (Control)	- - -	- - -			
	Supernatant				-	

Pellet				

Experiment – III

Seed germination, Pot study and Field trail

J) Different dilutions for seed germination

Plate – 21 to 25 showed the different dilutions of untreated and treated tannery effluent. The seed germination was carried out by different dilutions of supernatant.

Plate- 21 Different dilutions of untreated tannery effluent (TN)

Plate - 22 Different dilutions of tannery effluent treated with Navarasakaraisal (NRK)

Plate - 23 Different dilutions of tannery effluent treated with coir pith (TN + CP)

Plate - 24 Different dilutions of tannery effluent treated with Navarasakaraisal (TN + NRK)

Plate - 25 Different dilutions of tannery effluent treated with coir pith and Navarasakaraisal (TN + CP+NRK)

K) Seed germination on Vigna radiata L.

The seed germination study was carried out in different dilutions such as 12.5%, 25%, 50%, 75% & 100% of treated tannery effluent (supernatant) there was no germination in all the concentrations after 24 hrs. **(Plate - 26).** Better germination was observed in all concentrations after 96 hrs **(Plate - 27 & Fig - 1)**.

Plate – 26 Effect of untreated and treated tannery effluent on seed germination of *Vigna radiata* L. (24 hrs)

Plate – 27 Effect of untreated and treated tannery effluent on seed germination of *Vigna radiata* L. (96 hrs)

Fig-1 Effect of untreated and treated tannery effluent on seed germination of *Vigna radiata* L. (96 hrs)

The seed germination study was carried out in different treatments of treated tannery effluent (Pellet) such as TN+CP, CP+NRK, TN+CP+NRK, TN+NRK+SOIL, TN+CP+NRK+SOIL. There was no germination in all the concentrations after 24 hrs (Plate - 28).

100% of germination was observed in all the treatments after 96 hrs (Plate - 29). Root and shoot length was increased in combined treatment when compared with other treatments.

Plate – 29 Effect of untreated and treated tannery effluent on *Vigna radiata*. L (96 hrs)

L) Pot experiment on Tradescantia spathacea

After the seed germination a pot experiment was conducted to analyze the different dilutions (12.5%, 25%, 50%, 75% & 100%) of treated effluent on the plant *Tradescantia spathace* applied as foliar spray. On 15th day the tannery effluent applied plants were died in 75% and 100% due to heavy metals. But the plants were well grown in all concentrations of treated tannery effluent due to presence of coir pith and NRK (**Plate - 30**).

N-12.5% N-25% N-50% N-75% N-10% Por study Image: Construction of the state of the stat

Plate – 30 Application of Foliar (TN+CP+NRK) on *Tradescantia spathacea* (15th day)

The pot experiment was conducted to analyze the different concentrations (10g, 20g, 30g....100g) of treated tannery effluent on the plant *Tradescantia spathace* applied as basal. **Plate - 31** shows that there was no negative effect on plant growth and developments on 30th day.

Plate – 31 Application of Foliar (TN+CP+NRK) on Tradescantia spathacea (30th day)

TN-Tannery Effluent, CP-Coir Pith, NRK- Nava Rasa Karaisal

M) Scaling up technology

The manure (Foliar and Basal) was prepared in bulk (**Plates - 32, 32a & 32b**) with respect to scaling up technology for field application as given below.

S. No	Type of Manure	TN (L)	CP(Kg)	NRK (L)
1.	Foliar	90	2	10
2.	Basal	50	50	5

Plate – 32 Preparation of organic manure for scaling up technology

TN-Tannery Effluent, CP-Coir Pith, NRK- Nava Rasa Karaisal

N) Application on Field (Paddy & Banana)

The **plates - 33 & 36** shows the application of organic fertilizer (Basal & Foliar) on paddy and banana field. The fertilizer was applied to the paddy field measuring approximately 12,000 sq. ft and banana field for totally 60 plants (30 Control and 30 Treatment).
Plate – 33 Effect of inorganic and organic fertilizer on Paddy (*Oryza sativa*) Field (0th day)

Plate – 34 Application of Fertilizers (TN+CP+NRK) on Paddy field

TN-Tannery Effluent, CP-Coir Pith, NRK- Nava Rasa Karaisal

Plate - 35 Effect of inorganic and organic fertilizer (TN+CP+NRK) on Banana (*Musa acuminatae*) Field (0th day)

Plate - 36 Application of Fertilizers (TN+CP+NRK) on Banana field

TN-Tannery Effluent, CP-Coir Pith, NRK- Nava Rasa Karaisal

Plate - 37 showed the application of organic fertilizer (Basal & Foliar) on different plants such as brinjal, pumpkin, snake guard & ridge guard, etc.,

Plate - 37 Application of Organic Fertilizer on different plants

O. Analysis of growth and yield

i) Paddy (Oryza sativa L.)

Plate - 38 shows the yield of paddy field with respect to inorganic and organic fertilizer on 3rd month.

Plate - 38 Effect of inorganic and organic fertilizer (TN+CP+NRK) on Paddy (*Oryza sativa*) Field (3rd month)

The quantity of harvested paddy was found to be 441kgs for inorganic and 476kgs for organic fertilizers **(Plate - 39)**.

Plate - 39 Yield of inorganic and organic fertilizer (TN+CP+NRK) on paddy field (*Oryza sativa*)

TN-Tannery Effluent, CP-Coir Pith, NRK- Nava Rasa Karaisal

Plate - 40 exhibited the rough soil nature in inorganic and smooth soil nature in organic fertilizer after harvesting.

Plate – 40 Effect of inorganic and organic fertilizer (TN+CP+NRK) on Paddy (*Oryza sativa*) Soil after harvesting (3rd month)

Inorganic soil

Organic soil

The root length was increased in organic fertilizer (containing nutrients) when compared to the organic fertilizer **(Plate - 41)**.

Plate - 41 Effect of inorganic and organic fertilizer (TN+CP+NRK) on root length of Paddy

TN-Tannery Effluent, CP-Coir Pith, NRK- Nava Rasa Karaisal

ii) Banana (Musa acuminate)

Plate - 42 showed that the growth and yield of banana plant. The plants (which organic fertilizer was applied) showed satisfactory growth with respect flowers and fruits when compared to inorganic fertilizer.

Plate - 42 Growth and yield of *Musa acuminate* (Banana plant) applied with inorganic organic fertilizer

TN: Tannery; CP: Coir pith; NRK: Nava Rasa Karaisal; CF: Chemical Fertilizer; OF: Organic Fertilizer

After applying the fertilizer more number of earthworms were found in the organic fertilizer (Basal & Foliar) applied soil and its large size due to the presence of microorganisms in NRK (**Plate - 43**).

PLATE - 43 Effect of inorganic and organic fertilizer on earthworm (Lumbricus terrestris)

P. Development of Research & Training centre

A green shed was constructed in Model Organic Farm (MOF) at Bharathidasan University, Tiruchirappalli-24, Tamil Nadu to carry out the research activities related to treatment of tannery effluent using coir pith and microorganism (Plate - 44).

Plate - 44 Green shed

SUMMARY

- The physicochemical parameters in all treatments were considerably reduced in treated tannery effluent.
- > The degradation of tannery effluent confirmed by SEM & EDS.
- The microorganisms were found more no.of colonies in treated tannery effluent (Basal & Foliar) than untreated tannery effluent.
- The seed germinations were improved in basal (100%) and foliar (12.5%) on Vigna radiata. L.
- The Growth was improved in applied field of paddy and banana.
- The microbial flora (bacteria & fungi) of the soil treated with tannery effluent (Basal & Foliar) were improved in paddy & banana filed.
- More no.of earthworms were found in organic fertilizer applied banana soil than inorganic fertilizer applied soil.
- The Green Shed was constructed in Model Organic Farm at Bharathidasan University for Research and Training purpose.

* * * * *

45

Detailed Procedure Coir pith compost using tannery effluent and NRK for preparation of I MT manure

Submitted to Central Coir Research Institute Kalavoor. P.O, Alappuzha 688 522 Kerala, India.

Dr. P. MALLIGA

Professor and Head Dept. of Marine Biotechnolo Bharathidasan University Tiruchirappalli-24

NRK- Navarasa Karaisal preparation 100/ L

Table-1

COMPOSITION	CONTENT
Cow dung	10 kg
Cow urine	1 L
Milk	2 Itrs
Besan flour	2 kg
Curd	2 ltr
Jaggery	2 kg
Ghee	100 gm
Banana	12 pcs
Yeast/ Soil	100gms

Preparation of NRK

Preparation of NRK by mixing five products of cow along with the other ingredients (**Table-1**). To the 100L of water in a barrel cow dung, cow urine, milk, curd and ghee were added and mixed well. This was followed by addition of jaggery, gramflour, banana and hand full of yeast or fertile soil. The preparation should be placed in a shaded place for 2-7 days and stirred well twice a day (morning and evening) for fermentation. The barrel should be covered with a cloth/net to avoid contamination from other sources and aeration.

Preparation of manure

Mix 250 kg of coir pith with 1000L of tannery effluent (Plate -1) and 25 L of NRK (Plate -2) in a tank and cover with polythene sheet (Plate-3). Incubate for 30 days and the final product will be 1 MT. This can be mixed with 200kg of poultry manure for nitrogen supplement(Plate-4).

(Plate -1) Tannery effluent 1000L

Plate-2 Treatment in closed tank TN+CP+NRK –mix well and incubate for 30 days (yield 5MT)

Tannery Effluent (TN) 1000L

Coir pith (CP) 250 kg

Nava Rasa Karaisal (NRK) 25L

PLATE 4: Treatment of Coir pith and NRK with tannery effluent (1 M.T)

(For Enrichment add 200 kg of poultry manure)

TN-Tannery Effluent, CP-Coir Pith, NRK- Nava Rasa Karaisal

Application

1 MT/ acre, 5 kg / tree, 30gms / pot

Total Cost of NRK Preparation (100L):

Composition	Content	Amount (*) (Approx.)
Cow dung	10 kg	100
Cow urine	1 ltr	50
Milk	2 ltr	50
Besan flour	2 kg	90
Curd	2 ltr	240
Jaggery	2 ltr	300
Ghee	100 gm	70
Banana	12 pcs	100
Handful of soil	-	-
Total		1,000

Total Cost of Manure Preparation: Will vary from place to place

S. No	Particulars	Quantity	Amount (*)
1.	Coir pith	200Kg	600
2.	NRK	20L	200
3.	Tannery	1000L	500
4.	Poultry	200Kg	500
5.	Polythene Sheet (20x20)	1 Pac.	1,000
6.	Manpower	1	1,400
	1	Total	4,200

Demonstration at Central Coir Research Institute

The Bharathidasan University, Tiruchirappalli- 620024 was conducted the demonstration of organic manure production using Coirpith, Nava Rasa Karaisal and Tannery waste at Central Coir Research Institute (CCRI) Campus, Alappuzha, Alleppey, Kerala-688522 on 2-3, December, 2020 regarding the project entitled""Development of research and training centre for tannery waste treatment using coir pith and effective microorganism to convert it in to organic manure" in the presence of Review Committee members.

Following ingredients were used the above demonstration;

S.No	Ingredients	Weight (Kgs)
1	Coirpith (200kgs)	600
2	Tannery waste	200
3	Poultry	200
4	Nava Rasa Karaisal	20
	Total	1020

Preparation of Nava Rasa Karaisal (100L)

Demonstration at Central Coir Research Institute, Kalavoor, Alleppey

Tannery waste treatment using coir pith and effective microorganism (NRK) to convert it into organic manure

Mixing Coir pith, Tannery & Poultry

Preparation of NRK

Application of NRK

Covered with polythene sheet

Tannery waste treatment using coir pith and effective microorganisms to convert it into organic manure

DEPARTMENT OF MARINE BIOTECHNOLOGY Bharathidasan University Tiruchirappalli – 620 024, Tamil nadu, India

Report on

One Day Training cum demonstration Programme on

Treatment of Tannery waste using **Goir** pith and effective

microorganisms to convert it into organic manure

Presented to

CENTRAL COIR RESEARCH INSTITUTE Coir Board, (Ministry of MSME) Govt. of India Alappuzha - 688 522, Kerala, India

by

Dr. P. MALLIGA Professor, Department of Marine Biotechnology, Bharathidasan University, Tiruchirappalli-24 E-mail: <u>malliga.p@bdu.ac.in</u>

October-2021

BDU-COIR BOARD TRAINING PROGRAMME REPORT

Development of research and training center for tannery waste treatment using coir pith and effective microorganisms to convert it into organic manure

Department of Marine Biotechnology, Bharathidasan University, Tiruchirappall-24 conducted one day training programme on "Treatment of tannery waste using coir pith and effective microorganisms to convert it into organic manure" held on 06.10.2021 as a part of the project entitled "**Development of research and training center for tannery waste treatment using coir pith and effective microorganisms to convert it into organic manure**". In the programme twenty three industry representatives participants attended the training programme from varies districts of Tamil Nadu such as Chennai, Coimbatore, Pollachi, Dharmapuri, Pudukottai, Pattukottai, Dindigul, Thanjavur, Erode, Karur, Tiruchirapalli and Bangalore.

Further, five participants were connected through zoom meet online platform from Tamil Nadu and West Bengal also participated both in presentation and demonstration processes. Around twenty Student entrepreneurship participants from various departments of Bharathidasn University also took part in the training cum demonstration programme. Dr. P. Malliga, the Principal Investigator has explained the research and Development of the project and theoretical background of the technology at National Facility for Marine Cyanobacteria (NFMC), Bharathidasan University, Tiruchirappalli.

Dr. B. Radhakrishnan presented the Coir Board and CCRI research projects and developments, schemes, facilities and services to the society. In the afternoon session PI explained and exhibited the demonstration on at Model Organic Farm (MOF), Bharathidasan University, Tiruchirappalli. In this demonstration programme, preparation of effective microorganisms (Nava Rasa Karaisal) and mixing of coir pith and tannery effluent for conversion of manure has been done in front of all participants. Finally, discussion was made by the participants with Dr. P. Malliga, Dr. B. Radhakrishnan, Mr. G. Poopalan about role of coir pith and tannery waste decomposition by microbial consortium and vote of thanks proposed by Mr. K. Malkar Dindigul.

Feedback form report as follows:

Out of fifty participants thirty participants given a feedback mentioned as good, useful and informative training programme. Some of the participants asked to submit results of the reports done at Bharathidasan University to have for their references. Tannery industry representatives have taken composted manure sample for lab test and analysis. Student from different departments also informed as useful, innovative and informative training programme.

Encl:

- 1. List of participants- Ann-II
- 2. Attendance list Ann. III
- 3. Feedback form Ann. IV
- 4. Invitation Ann. I
- 5. Certificate Ann. V

COMPOSITION	CONTENT
Cow dung	10 kg
Cow urine	1 L
Milk	2 Itrs
Besan flour	2 kg
Curd	2 ltr
Jaggery	2 kg
Ghee	100 gm
Banana	12 pcs
Yeast/ Soil	100gms

Composition of Nava Rasa Karaisal (100L)

Preparation of Nava Rasa Karaisal (100L)

Training Programme Activities

Participants

Discussion about the Presentation

CCRI-Presentation

Demonstration

Discussion about the Demonstration

DEPARTMENT OF MARINE BIOTECHNOLOGYBHARATHIDASAN UNIVERSITY

Tiruchirappalli - 620 024, Tamil Nadu, India

CENTRAL COIR RESEARCH INSTITUTE

COIR BOARD

Alappuzha - 688 522, Kerala, India

We cordially invites you a One Day Training Programme on

Treatment of Tannery waste using Goir pith and

effective microorganisms to convert it into organic manure

Date :06.10.2021 (Wednesday)Venue:Bharathidasan UniversityModel Organic Farm

Opp. Ladies Hostel

Organized by

Dr. P. MALLIGA Professor and Head, Department of Marine B iotechnology, Bharathidasan University, Tiruchirappalli-24 E-mail: <u>malliga.p@bdu.ac.in</u>

Treatment of Tannery waste using **Goir** pith and

effective microorganisms to convert it into organic manure

Time	Programme
10.30am -11.00am	Registration
11.00am-11.45am	PPT Presentation
11.45am-12.00pm	Tea break
12.00pm-01.30pm	NRK preparation
01.30pm-02.30pm	LUNCH break
02.30pm- 03.30pm	Demonstration (Manure preparation)
03.30pm-03.45pm	Tea break
03.45pm-04.00pm	Discussion

<u>Agenda</u>

DEPARTMENT OF MARINE BIOTECHNOLOGY BHARATHIDASAN UNIVERSITY Tiruchirappalli – 620 024, Tamil Nadu, India &

CENTRAL COIR RESEARCH INSTITUTE Coir Board, (Ministry of MSME) Govt. of India Alappuzha – 688 522, Kerala, India

List of Participants

S. No	Name	Address	
1	S. Thilakar	Thilak Traders, Poovanam, Pattukottai	
2	V.P. Venketesan	Indeed Coporation, Coimbatore-641030	
3	M. Rakkiyannam	Grow Compost, Srivari Enterprise, Sathyamangalam	
4	A. Sudha	1/7k5, Palacoderoaf karimangajam, Dharmapuri-635111	
5	I.John Kennedy	S\O S.Innasimuthu, 1\1 kambar Street Alangudy, Pudukottai	
6	AJ. Shameen Ahmed	258\CAT, Wadi Road, Melvisharam, Tamilnadu	
7	Azharuddin	56, periama maistry st, peviamet, Chennai-3	
8	M.Sivakumar	Shine Coir Industy, 13\7k, Palacode Road, Karimangalam, dharmapuri-Dt,Tamilnadu	
9	V.Rayaz Ahmed	KH. Export Ind.PVT lim, KH Groups,P17, MBT Road ,Ranipet	
10	S. Julius	79\3, Salai Road Extn, JK Towers, First Floor, Thillai Nagar, Trichy-18	
11	P. Tamilselvan	E.K.H.m and Sons, 1-8, B.P.Asraharam, Erode	
12	V.Harini	62, Nehru Nagar, Ondipudur, Coimbatore	
13	K.Sathiyan	Coir Board, Thanjavur	
14	M. Manivannan	Saai Coirs , Sengipatti	
15	K.Malkar Sayan	Dindigul Coir Association	
16	V. Deepa	South Street, Sengipatti, Thanjavur.	
17	S.Lenin	9190\22\1, Vinayaga Nagar,pandalgudi	
18	E. Kayalvizhi	106-4 th Cross ,Vasanthanagar, 2 ND Jaynagar,Karumandapam,Trichy.	
19	A.Sivaranjani	1/486, Pookollai, Peravurani, Thanjavur.	
20	R.Dinesh kumar	South mettur Street, Vettaikkaran pudur, Pollachi.	
21	S.Sugan Joshi	1/59, Pathirpatti, karur-621313.	
22	R. Sivasakthivel	II MSC, MBT	
23	R. Hariprasath	II MSC, MBT	
24	Somdutta Dakshy	II MSC, MBT	
25	G. Anbalagan	Saai Coirs , Sengipatti	
26	R. Asai Thambi	BHEL	
27	Prasana Kumar	B, love	
28	G.Poopalan	Coir Board ,Pollachi	
29	Dr. S.Radhakrishnan	Senior, Scientific Officer, CICT	
30	K.Vinotha	DBT- Inspire Research Scholar, BDU	
31	S.Selvapriya	R/S, BDU	
32	V.Sangeetha	JA,NFMC, BDU	
33	T.S.Sureka	JRF, R/S, NFMC, BDU	
34	E .Kaviya	II MSC, MBT	

2.5	* * * *		
35	V.Veeramurugan	II MSC, MBT	
36	D.Kartheeswaran	II MSC, MBT	
37	G.Sudhe	II MSC, MBT	
38	Kumari Riya	II MSC, MBT	
39	Soniya Gupta	II MSC, MBT	
40	Gourau Chakraborty	II MSC, MBT	
41	S.Sai Mahesh Kumar	II MSC, MBT	
42	Mainak Roy	II MSC, MBT	
43	Shrestha Dutla	II MSC, MBT	
44	R.Saran	II MSC, MBT	
45	M.Subha Lakshimi	II MSC, MBT	
46	Arijit alukdar	II MSC, MBT	
47	T. Kumaravel	II MSC, Biotechnology, National College, Trichy	
48	S.Yoganathan	II MSC, Biotechnology, National College, Trichy	
49	K.Maheswaran	II MSC, Biotechnology, National College, Trichy	
50	S. Suriyanath	II MSC, Biotechnology, National College, Trichy	
51	S.Kaviyarasan	JRF, MBT	

DEPARTMENT OF MARINE BIOTECHNOLOGY BHARATHIDASAN UNIVERSITY Tiruchirappalli – 620 024, Tamil Nadu, India

ALLIS . HITH DESIGN

CENTRAL COIR RESEARCH INSTITUTE Coir Board, (Ministry of MSME) Govt. of India Alappuzha – 688 522, Kerala, India

One Day Training Programme on "Treatment of Tannery waste using Coir pith and effective microorganisms to convert it into organic manure

S. No	Name	Address	(Mobile No. & Email ID	Sign
(1	S. THILAGAR	POOVANAM, PATTULOTTAI	9500843686 Sevensurdia 786@ formail.	The
6	V. P. Venleatach	1 Indensed Corporation CormSelan - 641030	9443349159 Indeneed @ 9mmilian	kn
B.	Ralekiyanoan,	C Grow Composit Son Van Eatherti Sattyamangalari	9 886315256 mrakki yannan @gmail.con	M.A
4	ASUDHA	13/7K5, PALACODERCAD KARIMANGALAM, DHARMAPURI-635111	9655544920 sugisudha 14 @ gmail-com	tur
4	I JOHN KENNES	S/D.S. Innasimuthu VI Kownborg Striegt Alang voly Puduk Katton	9698550008 JK2T0619850 Jacon Com	87th.
D.	SHAMEEN ALMED A)	#255 GATILMADI RODO MECULATORAM	2042865375 abuethoneemige privit.com	M
à.	Astaruldin	56, Periarra registry str Periaret, Ch 3	978990160 INKOLEATERS Opmatus	J.

Attendance
. No	Name	Address	(Mobile No. & Email ID	Sign
Q.	m-sivalkumar	Shine coir industry 13/715, palarode voal, Kasi marguan, Dharmapiri - M, TN	9786707000 Iniva e shire coir-com	m
a.	V. RIYAZ AGMOD	K. H. Kelpons Phat Putter. KH-Granp P17, M.B.T. Road, Rampt	9894331642 tanneny.madel @ Ich india.com	R2
10	JULIUS.S	79/3, Saley Road Exton J k TOWERS, First Floor Thillow Nager Trichy - 18:	7708007091 Sjulius5@gma	l. um st
) 11 •	P. Jamilsewan	E.K. H.M. & Sons J-8, B.P. Agrahaman Errode	SOTZHA 2957 tannery. Ekhm gmail.	e for
12	HARINI-V	62. Nehru Nagar, Ondepucture. Combatore	9.1187961189 Kaninivelumani 1234 @gmail.um	8.4.V
13.	K. SATHIYAN	Con Bound Phanjavuv	NP NO 8754235901	K. 8001
19	M. Mairila	SAAI COIRS Sengipaditi.	NP NO 7373564613	M. Moni
15	· K. Malkar Sayar	Dindigui Coir Othoch	ferscoacoir@gm	"Denn ail an
1.	6 V. Dueps.	9626896415 WP: No: 9524302435	- Sengipaldi Thenjaum	V. Dug

S. No	Name	Address	(Mobile No. & Email ID	Sign
17.	J. MSC LANT S. Lerun	9190/2211 Vimayaya Wagar Pandalgudi	8778784907 lenini22003mail.	1.0,j-j
19.	I-MSC MIST HARINI.V	62, Nehru Nagari Ondipudar, combatore .641011	9487961185 harthilelumani 1224 @gmailrcom	HQ-V
19.	D. H. Sc. MIST E. Kayalvighi	106-4th QOIS vasanthanaga 2 nd Jacyanagar Kaumanaya Thiohy-1	kayallayak 039@ gmout wn	E Kauphigh"
00.	J-MSE MIBT A.Sivaranjani	Yare, pookkollaï, Ruravurani, Thanjavur.	7229474593 Sivaranjanjayappan 147@gmail.com	R. Profes
21.	R. Diresh kumar	SOUTH METTU STREET, VETTAIKARAN RUDOR, POLLACHI	8903413547 dinudk273@gminte	D-12.0
02.	S. Sugar Joshi	1/59 \$ Suburamani, Porthinipatti, Karua DK. Pincod : 621313	7868869222 Sugoryozhi 2000 Ognail Com	B.B.J
22'	R. Sinisfalllind	I MSC MET	9080960256	& M
29.	Haelphasath. R	M.Sc MBT	84118036915-	ALPE
25.	Semletta. Derestry.	I Mise MBT	943305 7308	5.0.

. No	Name	Address	(Mobile No. & Email ID	Sign
b.	G. AN BALAENAN	SAAI COIrs Senguratti	WP., NO: 809 8819637	-li -
27.	R. ASAITHAN	ORI 13 HEL	9442649118	Opro le
De.	PROBW Emma	- Silore.	876264 053 Prabu aportalog	s by
29	G. Pootabr Fo Board	Ro, poils	Propalans esanail · com	8123/91
Bo	DR. S. Radbalen, CICT, Pernyelne	hen Series Scientific	9497442044 skhasipaelosusi cicteorisondess	ten Du
0	k. vinothe	DBT-Inspire Research Scholars, NFMC, BDU.	micor vin 095@gma.	the ferbuild
34	S. Selvapingo	R/S. NFMC BDU	Driyaselvam1919@ grouilcor	n 8. hur
23	V. Sangeetha.	JA, NFMC, BDU	Soungeethav 2006@gmast. Com	rduyn
34	Sureka . T. S.	JRA, PLS NFMC, BDU.	Surelcats199629ma	. Dowell

S. No	Name	Address	(Mobile No. & Email ID	Sign
35'	E. Kaviya	MSL MBT	9486 8686 29	Erlef-
2b	V.V.Coramunigar	17 17	9626560206	V.V.J.
37	D kartheesworn	I M SC MBT	9655296963	DE
38	G. Sudhe	N H SL MBT	8778358338	Greet.
29	Kumari Riya	1.0	8778018754	
20	Soniya Gupta	11	8240177440	Que
41	Govoar cliakoubosty		8018631880	C1.C
112	S. Sai Mahesh Kumar	11	9790427858	Da
43	MAINAK ROY	ISMSC, W.B	8240328217	R.

S. No	Name	Address	(Mobile No. & Email ID	Sign
44	Shrestha Dutta	M.J.C. MBT	6295052412	Stude.
45	R-SPRAN	TI MSC MBI	6369413796	ty
Ub	M. Subha Lakshni ^o	I MSC MBT	8940371411	Not Sto
42	Arijit Talukder	I M.Sc M.B.T	9798832037 8017001917	Anij's Tolek
48	T-kumaravel	I MSC, Biotech National College	9442427393 Roura	Tikuno
49	S. KAYIYARASAN	JRF MBT	9944539263	S. tany
12	K-MAHESWARAN	I M.Sc Bistech NCT	7402633548	kinaly.
51	5. Yogarathan	I nd MSc 1)	9786993700	3.45
5-2	R. Swignth	I M.SC Bistech NCT	8012687138	P.S.

DEPARTMENT OF MARINE BIOTECHNOLOGY BHARATHIDASAN UNIVERSITY Tiruchirappalli – 620 024, Tamil Nadu, India

State ATTR SCON - VILLE

8

CENTRAL COIR RESEARCH INSTITUTE Coir Board, (Ministry of MSME) Govt. of India Alappuzha – 688 522, Kerala, India

One Day Training Programme on "Treatment of Tannery waste using Coir pith and effective microorganisms to convert it into organic manure Feedback Form

S. No	Name & Address	Feedback	Sign
0	Venkarachalam Indensed corporation Computation 641030	Good one please osgaise in little more Systematic way	JR
Ð	S. Thilagar Thilall Traders, Poovanam Pattulcottai	Its an important uniceative pbs Continue till it Succea	3h
3	Rakki yannam, C Gnow Lompost Sri vani Enmets Santhanamangalam	please share is the ppt mrakkiyannan@gmait	M.M.
Ð	A Sudha, 13/7K5, Palquode soad, laimangala Dharmapuri -635111	m, Same atladee	Au
Ð	I. John Kennedy, Kambai smoet, Alangudy, Pudulkottai	Speed aff-cf.	B.F.L
6	Shameen Ahmed. NJ, Ilajiwadi Road,	Glood stort taken for convert warte data binly share the data ppt Sausytis report	M

S. No	Name & Address	Feedback	Sign
Ŧ	Azhaluddin, 50, Pericon maistry St, Decianul, Ch3	Pook a Sample. Will review it - Need Project Report	AN
Ċ	M. Si Vakumal, Shins love Industry, 13)7K, Palacoole Road, Kasimongalaw,	come out wion more rescorch.	und
0	V. Riyaz Ahmud, KH Expar Dudushy Putildt, Piz.MBT Road, Royat.	Pp + arm Anoys, Report of Berfor & Aftz franker of tennes effect . It pos tannes make okching	R
(tb)	P. TamilSelvan, G'K'H'M) Sons 11-8, B'D. Agaahanan Groote	Jund Preject for Jannerss and Agri Prease Need full Projuct Report	family
Ð	Fulius S, 7913 , Salai Rond EXAN, JK. Towels, First flow Thilloi Nagay, Trily 18	DApplicable Tes for Forman Waste, pitter & NRF, before After. D) project report like wost c-1st	- J2
Ð	Sathiyan · K i Corr Bo and Thanjawwr	Training is mafin for marking pragnic manning. to agriculture.	K. Somiy
B	M. Manivannan, CAAI ColRS Biongipatti	preparation is	8.000 -
(14)	K. Mallow Scypeni, Dindig Coir associates, Dindigul	Very Sood.	burn

	S. No	Name & Address	Feedback	Sign
	Ē	V Deepa, South street, Sergipatie, Thanjavur,	tsoia Alos unscala ci BENJB:	V.D.P.
	Ab	Gi Anbalagan, SAAI LUIRS, Sengi patti	The Gappiens in	gored
	Ŧ	R. Asai Tha Mhi , BHEL .	Usaful workshup on brann feiture of organie manure usig cor jost Tanon y etter and micro organiom.	2
	18 .	PRABHUKUMARIR Rangalor (CITI) PRABUEXPORTS. 8762640535	Good Sersion Expecting details of all anothere a prasuexports 2090 (agnil . con
÷,	19.	P. Tamil Sewan E.K. H.M & Sons B.P. Agaraharam Erode 8072442954	X	- ×
	20	G. Pourala	Nert in Jonanin and taca un wir pitais one o	and onite &
	21.	R. JARDA).	yory good.	Bing.
	22.	S.Sai Mahesh	Instative	Sa.

S. No	Name & Address	Feedback	Sign
21.	Swa Skithiver	beopr	Argence
24,	D. Kartherswonn	Excellent	Het_
25.	R.Hareprasath -	Good	the photo
26	V. Veenamunugan	Good	$\vee \cdot \vee \cdot$
27	F. Paghu Kanman	Good	E.p.
28	Mainak Roy	Informative.	METZ.
29.	Ayut Talukdur	Good	Pj-
30	Gowraw chabralierthy	Escelluit	G.t.

\$

S. No	Name & Address	Feedback	Sign
31,	T. Kumaravel National college Trichy	Innovabive, Excellents	T. kumarge
<u>3</u> 2.	K. Maheswanan National College Trichy	useful workshop, and Innovative	k-maly.
33	G. Scuthe [I. M.SC MBT	Informutive	G1. Sudhe
34.	M. Subha Lakshmi II M. SC- MBT	very useful and get new information	N. Sul
35	E. Kaviya II-M.SC MBST	Good & useful phogram. Learned cavily without istaining	t'ili
36.	Boniya Gupta II-mse-MBT	Grood & Informative	R
37.	Semdatta Dalishy - II - MSC - MBT	broad a very. informative.	S·D.
38-	Shrestha Dutta D-MSC HBT	Informative.	Soute

S. No	Name & Address	Feedback	Sign
89.	TKUMANI Rija I Msc. MBT	My Suturative V Innovielde.	The.
40.	Souvik Nyaya II MSC, MBT	very much informative	2 Mart
41.	HARIMA. V 2. MSC, MBT	Informative and knowledgeable	JR.J. V 06/10/2021
42 .	Kayalvighi E. I. MSC, MBI	very informative and useful	Kayalingkit. 06/10/2021
43.	A Stvaranjani I MS.C MBT	Very useful Informative	A. Sufi
44.	DINESH KUMAR.R Imsc MBT	Very Innovative. Preforation is food,	D=1-R
45.	S. Lenin Z MSC MBT	Effective y Useful	Ali
46	Sugan Joshi	Very unovative and helpfal	Suy:

DEPARTMENT OF MARINE BIOTECHNOLOGY BHARATHIDASAN UNIVERSITY Tiruchirappalli – 620 024, Tamil Nadu, India & CENTRAL COIR RESEARCH INSTITUTE Coir Board, (Ministry of MSME) Govt. of India Alappuzha – 688 522, Kerala, India

CERTIFICATE OF PARTICIPATION

This is to certify that _____has participated in One Day Training programme on "Treatment of Tannery waste using Coir pith and effective microorganisms to convert it into organic manure" on 6th October, 2021.

> Dr. P. MALLIGA Organizer

DEPARTMENT OF MARINE BIOTECHNOLOGY BHARATHIDASAN UNIVERSITY Tiruchirappalli – 620 024, Tamil Nadu, India & CENTRAL COIR RESEARCH INSTITUTE COIR BOARD Alappuzha - 688 522, Kerala, India

We cordially invite you for the discussion on

Project: Development of Research and Training for Tannery waste treatment using coir pith and effective micro organisms to convert it into organic manure

by

The Hon'ble Chairman National Coir Board, Ministry of MSME, Cochin, Gov. of India

The Hon'ble Vice Chancellor Bharathidasan University, Tiruchirappalli-24, Tamil Nadu, India

Visit on 11.10.2021 (Monday) at 10.30am (VC Office, NFMC & MOF)

Dr. P. MALLIGA Professor & Principal Investigator Dept. of Marine Biotechnology, Bharathidasan University, Tiruchirappalli-24 The Registrar Bharathidasan University, Tiruchirappalli-24, Tamil Nadu, India

DEPARTMENT OF MARINE BIOTECHNOLOGY BHARATHIDASAN UNIVERSITY Tiruchirappalli – 620 024, Tamil Nadu, India & CENTRAL COIR RESEARCH INSTITUTE Coir Board, (Ministry of MSME) Govt. of India Alappuzha – 688 522, Kerala, India

The Hon'ble Chairman visit to Hon'ble Vice Chancellor Bharathidasan University

The Hon'ble chairman of National Coir Board, Ministry of MSME, Cochin, Government of India visited Department of Marine Biotechnology, Bharathidasan University, Tiruchirappalli on 11.10.2021 (Monday) and discussed with the Hon'ble Vice Chancellor, Bharathidasan University about the Treatment of tannery waste using coir pith and effective microorganisms to convert it into organic manure and training programme conducted at Model Organic farm.

Dr. P. Malliga, Professor, Department of Marine Biotechnology, Bharathidasan University narrated the organic manure production at National Facility for Marine Cyanobacteria (NFMC) and exhibited the decomposed manure in Model Organic Farm (MOF) to the Hon'ble Chairman, Coir Board, G. Poopalan, Regional officer, Coir Board Pollachi and other Industry representatives.

PRESS REOPRT

The Union Ministry of Small Industries' Coir Industries Board Chairman T.Kuppuramu after visiting the Department of Marine Bioitechnology and met Vice-Chancellor of Bharathidasan University M.Selvam and suggested to start producing organic fertilisers by using the coir particles and effective microbiologists and also using the effluent derived from the tanning of skins. Professor of Marine Biotechnology Department P.Mallika was present during the discussion.